The Basis of VCP-Mediated Degeneration: Insights From a Drosophila Model of Disease

نویسندگان

  • Gillian P. Ritson
  • Paul Taylor
چکیده

Valosin-containing protein (VCP) is a highly conserved molecular chaperone that regulates a wide array of essential cellular processes. Mutations in VCP are causative of degenerative disease that can affect muscle, brain and bone. Despite VCP being implicated in many major pathways in the cell, the mechanism of disease pathogenesis is unknown. To gain insight into the degeneration associated with mutations in VCP, we developed and characterized a Drosophila model of disease that recapitulated VCP mutation-dependent toxicity. VCP is involved in a diverse array of activities, many of which we may not know. Therefore we employed an unbiased genetic screening method that has the potential to uncover unanticipated pathways affected in the disease. Using this approach, we identified four proteins that dominantly suppressed degeneration; one of which was Ube4b, one of the many known ancillary proteins that bind to VCP and determine its function. The three remaining dominant modifiers identified were all RNA-binding proteins including TBPH, the Drosophila orthologue of TAR (trans-activating response region) DNA-binding protein (TDP-43). TDP-43 has been identified as a major component of the ubiquitinated inclusions characteristic of an emerging spectrum of proteinopathies, including degeneration associated with VCP mutations. Redistribution of TDP-43 from the nucleus to the cytoplasm has been demonstrated in these proteinopathies but the significance of this was unknown. Here we demonstrated that TDP-43 and VCP interact genetically and disease-causing VCP mutations led to redistribution of TDP-43 to the cytoplasm in vitro and in vivo, replicating the major pathology observed in TDP-43 proteinopathies. Furthermore, we demonstrated that TDP-43 redistribution is sufficient to induce cytotoxicity. Together our results show that degeneration associated with VCP mutations is mediated, in part, by toxic gain of function of TDP-43 in the cytoplasm where its redistribution is possibly due to the altered binding repertoire of VCP. This work acts to further our understanding of the pathogenic mechanism of, not only VCP-related disease but also a broad array of TDP-43 proteinopathies that include frontotemporal dementia, inclusion body myopathies and amyotrophic lateral sclerosis. Degree Type Dissertation Degree Name Doctor of Philosophy (PhD) Graduate Group Neuroscience First Advisor J. Paul Taylor

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TDP-43 mediates degeneration in a novel Drosophila model of disease caused by mutations in VCP/p97.

Inclusion body myopathy associated with Paget's disease of bone and frontotemporal dementia (IBMPFD) is a dominantly inherited degenerative disorder caused by mutations in the valosin-containing protein (VCP7) gene. VCP (p97 in mouse, TER94 in Drosophila melanogaster, and CDC48 in Saccharomyces cerevisiae) is a highly conserved AAA(+) (ATPases associated with multiple cellular activities) ATPas...

متن کامل

VCP Is Essential for Mitochondrial Quality Control by PINK1/Parkin and this Function Is Impaired by VCP Mutations

Mutations in VCP cause multisystem degeneration impacting the nervous system, muscle, and/or bone. Patients may present with ALS, Parkinsonism, frontotemporal dementia, myopathy, Paget's disease, or a combination of these. The disease mechanism is unknown. We developed a Drosophila model of VCP mutation-dependent degeneration. The phenotype is reminiscent of PINK1 and parkin mutants, including ...

متن کامل

WldS requires Nmnat1 enzymatic activity and N16–VCP interactions to suppress Wallerian degeneration

Slow Wallerian degeneration (Wld(S)) encodes a chimeric Ube4b/nicotinamide mononucleotide adenylyl transferase 1 (Nmnat1) fusion protein that potently suppresses Wallerian degeneration, but the mechanistic action of Wld(S) remains controversial. In this study, we characterize Wld(S)-mediated axon protection in vivo using Drosophila melanogaster. We show that Nmnat1 can protect severed axons fro...

متن کامل

Pathogenic VCP/TER94 Alleles Are Dominant Actives and Contribute to Neurodegeneration by Altering Cellular ATP Level in a Drosophila IBMPFD Model

Inclusion body myopathy with Paget's disease of bone and frontotemporal dementia (IBMPFD) is caused by mutations in Valosin-containing protein (VCP), a hexameric AAA ATPase that participates in a variety of cellular processes such as protein degradation, organelle biogenesis, and cell-cycle regulation. To understand how VCP mutations cause IBMPFD, we have established a Drosophila model by overe...

متن کامل

Cardiac-Restricted Expression of VCP/TER94 RNAi or Disease Alleles Perturbs Drosophila Heart Structure and Impairs Function

Valosin-containing protein (VCP) is a highly conserved mechanoenzyme that helps maintain protein homeostasis in all cells and serves specialized functions in distinct cell types. In skeletal muscle, it is critical for myofibrillogenesis and atrophy. However, little is known about VCP's role(s) in the heart. Its functional diversity is determined by differential binding of distinct cofactors/ada...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014